Знаменитую теорему Пифагора — «в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов» — знают все со школьной скамьи.
Ну, вы помните «Пифагоровы штаны», которые «во все стороны равны» — схематический рисунок, поясняющий теорему греческого ученого.
Здесь a и b — катеты, а с — гипотенуза:
Сейчас я вам расскажу об одном оригинальном доказательстве этой теоремы, о котором вы, возможно, не знали…
Но, сначала рассмотрим одну лемму — доказанное утверждение, которое полезно не само по себе, а для доказательства других утверждений (теорем).
Возьмем прямоугольный треугольник с вершинами X, Y и Z, где Z — прямой угол и опустим перпендикуляр с прямого угла Z на гипотенузу. Здесь W — точка, в которой высота пересекается с гипотенузой.
Эта линия (перпендикуляр) ZW разбивает треугольник на подобные копии самого себя.
Напомню, что подобными называются треугольники, углы у которых соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого треугольника.
В нашем примере образовавшиеся треугольники XWZ и YWZ подобны друг другу и также подобны исходному треугольнику XYZ. Доказать это несложно.
Начнем с треугольника XWZ, обратите внимание, что ∠XWZ = 90, и поэтому ∠XZW = 180–90-∠X. Но 180–90-∠X — это именно то, что ∠Y, поэтому треугольник XWZ должен быть подобным (все углы равны) треугольнику XYZ. Такое же упражнение можно выполнить для треугольника YWZ.
Лемма доказана! В прямоугольном треугольнике высота (перпендикуляр), опущенная на гипотенузу, разбивает треугольник на два подобных, которые в свою очередь подобны исходному треугольнику.
Но, вернемся к нашим «Пифагоровым штанам»…
Опустим перпендикуляр на гипотенузу c. В результате у нас образовались два прямогульных треугольника внутри нашего прямоугольного треугольника. Обозначим эти треугольники (на картинке вверху зеленым цветом) буквами A и B, а исходный треугольник — буквой С.
Разумеется, площадь треугольника С равна сумме площадей треугольников A и B, т.е. А + B = С
Теперь разобьем фигуру вверху («Пифагоровы штаны») на три фигурки-домика:
Как мы уже знаем из леммы, треугольники A, B и C подобны друг другу, поэтому и образовавшиеся фигурки-домики также подобны и являются масштабированными версиями друг друга.
Это означает, что соотношение площадей A и a², — это то же самое, что отношение площадей B и b², а также C и c².
Таким образом, мы имеем A / a² = B / b² = C / c² .
Обозначим это соотношение площадей треугольника и квадрата в фигуре-домике буквой k.
Т.е. k — это некий коэффициент, связывающий площадь треугольника (крыши домика) с площадью квадрата под ним:
k = A / a² = B / b² = C / c²
Из этого следует, что площади треугольников можно выразить через площади квадратов под ними таким образом:
A = ka², B = kb², и C = kc²
Но, мы помним, что A+B = C, а значит, ka² + kb² = kc²
Или a² + b² = c²
А это и есть доказательство теоремы Пифагора!
- По материалам заметки Колина Фразера (Colin Fraser)
@uanix Поздравляю! Вы добились некоторого прогресса на Голосе и были награждены следующими новыми бейджами:
Награда за количество голосов
Вы можете нажать на любой бейдж, чтобы увидеть свою страницу на Доске Почета.
Чтобы увидеть больше информации о Доске Почета, нажмите здесь
Если вы больше не хотите получать уведомления, ответьте на этот комментарий словом
стоп
Ваш пост поддержали следующие Инвесторы Сообщества "Добрый кит":
gidlark, retoldname, vika-teplo
Поэтому я тоже проголосовал за него!
Узнать подробности о сообществе можно тут:
Разрешите представиться - Кит Добрый
Правила
Инструкция по внесению Инвестиционного взноса
Вы тоже можете стать Инвестором и поддержать проект!!!
Если Вы хотите отказаться от поддержки Доброго Кита, то ответьте на этот комментарий командой "!нехочу"